首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   572篇
  免费   23篇
  国内免费   23篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   11篇
  2019年   13篇
  2018年   9篇
  2017年   14篇
  2016年   19篇
  2015年   8篇
  2014年   17篇
  2013年   14篇
  2012年   6篇
  2011年   19篇
  2010年   25篇
  2009年   24篇
  2008年   19篇
  2007年   35篇
  2006年   48篇
  2005年   28篇
  2004年   22篇
  2003年   20篇
  2002年   24篇
  2001年   21篇
  2000年   21篇
  1999年   11篇
  1998年   12篇
  1997年   4篇
  1996年   22篇
  1995年   10篇
  1994年   14篇
  1993年   18篇
  1992年   8篇
  1991年   9篇
  1990年   10篇
  1989年   9篇
  1988年   6篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   9篇
  1981年   8篇
  1980年   2篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
排序方式: 共有618条查询结果,搜索用时 15 毫秒
71.
Gizzard shad Dorosoma cepedianum were collected in 23 and threadfin shad D. petenense were collected in 22 of the 60 Florida lakes sampled. Logistic regression equations were 94% effective for predicting gizzard shad occurrence from chlorophyll and lake surface area, and 84% effective for predicting threadfin shad occurrence from lake surface area and lake volume inhabited (PVI). Occurrence of both shad species was related positively to lake size. In lakes where gizzard shad or threadfin shad were collected, shad density and biomass of both shad species were related positively to chlorophyll. Gizzard shad populations were generally vulnerable to predation in lakes, with the per cent of gizzard shad ≤200mm L T values exceeding 60% with few exceptions. Effects of gizzard shad and threadfin shad on fish community dynamics may be confined to relatively large (>100 ha) and fertile (chlorophyll >20–30μg l−1) Florida lakes.  相似文献   
72.
1. In this study, we examine how a 7‐year period of expanding submerged stonewort (Chara spp.) vegetation during a shift from turbid to clear water in a shallow lake influenced individual growth and population size structure of perch (Perca fluviatilis). We expected that a shift from phytoplankton to macrophyte dominance and clear water would improve feeding conditions for perch during a critical benthivorous ontogenetic stage, and enhance the recruitment of piscivorous perch. 2. Growth analysis based on opercula showed that growth during the second year of life was significantly higher in years with abundant vegetation than in years with turbid water and sparse vegetation. Growth was not affected during the first, third and fourth year of life. Stable isotope analyses on opercula from 2‐year‐old perch showed that the increase in growth coincided with a change in carbon source in the diet. Stable nitrogen ratio did not change, indicating that the increased growth was not an effect of any change in trophic position. 3. Following the expansion of submerged vegetation, perch size range and abundance of piscivorous perch increased in central, unvegetated areas of the lake. In stands of stoneworts, however, mainly benthivorous perch were caught, and size range did not change with time. 4. Our findings provide empirical support for the notion that establishment of submerged vegetation may lead to increased recruitment of piscivorous perch, because of improved competitive conditions for perch during the benthivorous stage. This is likely to constitute a benthic‐pelagic feedback coupling, in which submerged vegetation and clear water promote the recruitment of piscivorous perch, which, in turn, may increase water clarity through top‐down effects in the pelagic.  相似文献   
73.
The Chassahowitzka, Homosassa and Crystal rivers along the central Gulf coast of Florida were studied from 1998 to 2000 to identify factors controlling the abundance and distribution of submersed aquatic vegetation (SAV). Each of these three low-lying coastal rivers are spring-fed and exhibit low to moderate absolute flow rates (flows in either direction because of tidal influences, 0.06–0.46ms–1) with only 14 of the stations sampled for SAV having flow rates in excess of 0.25ms–1. At those stations where flow rates exceeded 0.25ms–1, the substrate was generally comprised of exposed limestone outcroppings and did not provide a favorable habitat for either submersed macrophytes or macroalgae. The remaining sampling stations, where flow rates were less than 0.25ms–1, had suitable substrates (e.g. mud, mud/sand, and sand) for the colonization and subsequent growth of SAV. Light availability and salinity were determined to be major factors affecting the distribution and abundance of SAV. Sampling stations, where the percent of incident light at the surface reaching the substrate was less than 10, had little or no SAV biomass. Low SAV biomass was also linked to sites where annual average salinities exceeded 3.5. Nutrient loads and nutrient concentrations accounted for little variance in SAV biomass after accounting for flow and related substrate type, light and salinity. These latter factors control the distribution and abundance of SAV in these three Florida coastal rivers.  相似文献   
74.
Many rivers and wetlands in south-western Australia are threatened by salinisation due to rising saline watertables, which have resulted from land clearing and the replacement of deep-rooted perennial species with shallow-rooted annual species. A four to six weekly sampling program of water quality, submerged macrophytes and macroinvertebrates was undertaken at six wetlands, from September 2002 to February 2004, to investigate seasonal variation in a range of primary and secondary saline systems. The wetlands dried and filled at different times in response to local rainfall patterns, and salinities varied accordingly with evapoconcentration and dilution. Two types of clear-water wetlands were recognised; those dominated by submerged aquatic macrophytes (Ruppia, Lepilaena and Lamprothamnium) and those dominated by benthic microbial communities. Two types of turbid wetlands were also recognised; those with high concentrations of phytoplankton and those with high concentrations of suspended sediments. A primary saline lake and two lakes that have only recently been affected by secondary salinisation persisted in a clear, macrophyte-dominated regime throughout most of the study period, except during drying and filling. Two lakes with a long history of secondary salinisation (70 years) moved between regimes over the study period. A clear, benthic microbial community – dominated regime only persisted at the wetland which contained permanent water throughout the study period. The turbid regimes were only present during drying and refilling phases. A richer and more abundant macroinvertebrate fauna was associated with the clear, macrophyte- dominated wetlands. Our results suggest that the development of management guidelines that recognise the presence of different ecological regimes and that consider the interactions between water regime, salinity, and primary and secondary production will be more useful in protecting biodiversity and ecological function in these systems than managing salinity as a single factor.  相似文献   
75.
The present work aimed at studying the rotifer communities of three shallow eutrophic lakes in Portugal (lakes Mira, Vela and Linhos). At the time of the study, Mira and Vela faced large inputs of allochthonous nutrients, while Linhos was facing terrestrialisation, with cycles of dominance-senescence of macrophytes. The three lakes differed in terms of their abiotic features, with Linhos presenting very high nutrient levels and low pH, while Vela and Mira shared most of the characteristics. The rotifer communities of these two lakes were poorly diversified but highly abundant (max. > 2000 ind l−1), with a clear dominance of eurytopic euplanktonic species (mainly Keratella cochlearis). On the other hand, Linhos presented lower abundances (<1000 ind l−1) but higher species richness, mainly due to macrophyte-associated taxa, such as the littoral genera Lepadella, Testudinella and Squatinella. In all lakes, summertime represented a peak in terms of abundance and diversity. Canonical correspondence analysis (CCA) identified two main environmental gradients that shape up the rotifer assemblages: a temporal gradient, mainly related to temperature, and a eutrophy gradient, associated with nitrogenous nutrients. The latter gradient is clearly dependent on between-lake variation, due to the high nutrient levels observed in lake Linhos. Variance partitioning using CCA revealed that the largest portion (27.5%) of the total variation explained (52.1%) was attributed to the interaction between lake and environmental variables.  相似文献   
76.
The macroscopic algae Characeae are usually assumed to occur in waterbodies supplied by groundwater with low phosphate content, but the indicative value of the species is seldom defined in bibliography. Former braided channels of the Rhône river are supplied with groundwater originating from the main channel (seepage) or from hillslope aquifer. The aim of the present paper was to determine if it possible to use the Characeae as indicators of physicochemical characteristies of water in order to assess the origin of groundwater supplying former river channels. Four former braided channels of the Rhône River colonized by Characeae were investigated, and the physico-chemical characteristics of i) the channels, ii) the groundwater and iii) the river were measured over a period of several months. Species are arranged along a gradient of conductivity, alkalinity, ammonium and phosphate content of the water. Charophyte species can indicate the origin of groundwater, either seepage or hillslope nutrient-poor aquifer, and integrate both the average value of the chemical parameter, and their variations. C. hispida occurs in a nutrient-poor channel mainly supplied by highly calcareous groundwater coming from hillslope aquifer. Chara major has requirements close to those of C. hispida, but is more tolerant to periodic inputs of nutrients. C. vulgaris and N. syncarpa both tolerate mesotrophic waters originating from both hillslope aquifer and seepage, and C. globularis is associated to a channel mainly supplied by mesotrophic to eutrophic river seepage.  相似文献   
77.
Abstract This study documents the fish and decapod crustaceans inhabiting a bed of Gracilaria verrucosa that was drifting on the bottom of a temperate marine embayment in relatively deep water (15- 18m) during autumn 1991. Fauna were sampled with diver-operated enclosure nets. Relatively few species inhabited the algae at this time, and the assemblage was primarily a subset of that in adjacent Posidonia australis beds. Three fish species [Neoodax balteatus (Odacidae), Cristiceps australis (Clinidae), Siphamia cephalotes (Apogonidae)] and one species of crab [Nectocarcinus tuberculosus (Portunidae)] dominated the catches numerically. A further 14 fish and decapod species were relatively rare. Neoodax balteatus, C. australis and N. tuberculosus were caught at all life stages and appeared to be permanent residents of the Gracilaria. Few juveniles of other species were captured, which indicates that these algal wracks may not be an important nursery habitat for seasonally resident fish species. Trachurus novaezelandiae and a number of other fish species that associate with a variety of benthic habitats appeared to be transient visitors. The biomass of algae varied significantly within the bed, but algal biomass was not a good indicator of faunal abundances. The low species richness of the fish and decapod crustacean assemblage may be related to both lower recruitment in deeper water and to unfavourable characteristics of the alga.  相似文献   
78.
1. Standing dead plant litter of emergent macrophytes frequently constitutes a significant fraction of the detrital mass in many freshwater wetland and littoral habitats. Rates of leaf senescence and decomposition of the emergent macrophyte Juncus effusus were examined in a small freshwater wetland in central Alabama, U.S.A. Juncus effusus leaves in the initial stages of senescence were tagged in random plant tussocks and monitored periodically to determine in situ rates of leaf senescence and death. Fully senescent leaves were collected, placed in litter bags, and suspended above the sediments to simulate standing dead decay conditions. Litter bags were periodically retrieved over 2 years and analysed for weight loss, litter nutrient contents (N, P), associated fungal biomass and fungal taxa. 2. Senescence and death of J. effusus leaves proceeds from the leaf tip to the base at an exponential rate. The rate of senescence and death of leaf tissue increased with increasing temperatures. Plant litter decomposition was slow (k = 0.40 yr–1), with 49% weight loss observed in 2 years. Both the nitrogen (N) and phosphorus (P) concentration (%) of litter increased during decomposition. However, the total amount of nitrogen (mg) in litter bags remained stable and phosphorus increased slightly during the study period. 3. Fungal biomass associated with plant litter, as measured by ergosterol concentrations, varied between 3 and 8% of the total detrital weight. Values were not significantly different among sampling dates (P > 0.05, ANOVA, Tukey). Fungi frequently identified on decaying litter were Drechslera sp., Conioscypha lignicola (Hyphomycetes), Phoma spp. (Coelomycetes), Panellus copelandii and Marasmiellus sp. (Basidiomycota). 4. These results support previous findings that plant litter of emergent macrophytes does not require submergence or collapse to the sediment surface to initiate microbial colonization and litter decomposition.  相似文献   
79.
During the early 1900s, more than 90% of the surface area of Cootes Paradise Marsh was covered with emergent vegetation; currently, less than 15% of the surface is covered with aquatic vegetation and the remainder is wind-swept, turbid, open water. The loss of emergent cover is significantly correlated with mean annual water levels that increased more than 1.5 m over the past 60 years. Species diversity and the percent cover of the submerged macrophtye community also declined dramatically after the 1940s, coincident with decreased water clarity and increased nutrients from pollution by sewage and stormwater effluent. Phosphorus levels in the marsh dropped ten-fold after the sewage plant was upgraded to a tertiary-treatment facility in 1978; however, there was no measurable improvement in water clarity, in spite of a decrease in chlorophyll concentrations. Long-term changes in the composition of the planktonic, benthic and fish communities accompanied changes in water clarity, nutrient status and macrophyte cover. Phytoplankton changed from a community dominated by diverse taxa of green algae and diatoms during the 1940s, to a less diverse community dominated by a few taxa of green and blue-green algae in the 1970s, then to a much more diverse community recently, including many taxa of green algae, diatoms and chrysophytes; however, because water turbidity continues to be high, and algae tolerant of low light levels are now very abundant. Daphnia, which were prominent during the 1940s (especially in the vegetated sites) were replaced in the 1970s by smaller zooplankton such as the cladoceran, Bosmina, and several rotifer species including Brachionus, Asplanchna and Keratella. In the recent survey conducted in 1993 and 1994, small-bodied forms still dominate the turbid open-water areas, while medium-sized cladocerans such as Moina were common near macrophyte beds. Generally, total herbivorous zooplankton biomass tended to be highest next to Typha beds and declined with increasing distance from the plants. Conversely, biomass of edible algae at these sites increased with distance from the macrophytes. Species diversity of aquatic insects declined dramatically over the past 40 years, from 57 genera (23 families and 6 orders) in 1948, to 9 genera (6 families and 3 orders) in 1978, to only 5 genera (3 families and 2 orders) in 1995. The diverse benthic community present 5 decades ago has now been replaced by a community consisting primarily of chironomid larvae, oligochaetes and other worms associated with low-oxygen environments. These successional changes illustrate the impact of natural (fluctuating water levels) and anthropogenic (deterioration in water quality) stressors on the character of the biotic communities, and reveal the complex interactions among the various trophic levels and the abiotic environment as degradation and remediation proceeded.  相似文献   
80.
The late-spring quantitative relationship between epiphyton and macroinvertebrates was analyzed on the basis of units of colonizable plant surface of Typha angustifolia, Phragmites australis and Nuphar lutea (floating leaves) in the shallow euthrophic Lake Loosdrecht (the Netherlands), with a high seston load. The non-predatory chironomid larvae (Glyptotendipes viridis, Endochironomus albipennis, Pentapedilum sordens, Cricotopus sylvestris agg.) dominated among the macroinvertebrate taxa, controlling the diversity and resemblance of macroinvertebrate assemblages. There was a gradient in functional feeding groups among the chironomids from continuous filtering of the seston to prevailing utilization of epiphyton. We found no direct relationship between the total macroinvertebrate abundance and the epiphyton mass on the plants surface. We attribute this to the filter feeding-strategy of the most abundant species, Glyptotendipes viridis, that utilizes seston in the eutrophicated lake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号